
LA-UR-21-28003
Approved for public release; distribution is unlimited.

Title: Using Computational Storage Devices: OpenMP/MPI and Charliecloud

Author(s): Janz, Jacob Benjamin
Goldstein, Justin James
Cunningham, Clyburn
Hammock, Charles Warren
Liu, Ralph
Rimerman, Mitchell

Intended for: Report

Issued: 2021-08-10

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Using Computational Storage
Devices: OpenMP/MPI and
Charliecloud

08/12/2021 | 1

Clyburn Cunningham IV, Justin Goldstein, Warren Hammock (USG),
Jacob Janz, Ralph Liu, Mitch Rimerman

Mentors: Shane Goff, Steve Poole, Kevin Bryant (USG)

LA-UR 198291839028u909 (fake pls replace)

Introducing Computational Storage Devices (CSDs)

● Computational Storage → Near-data processing

● Runs software where data resides

● Potential performance improvement

○ Offload tasks from host

08/12/2021 | 2

Introduction

● Originally used Spark and HadoopFS

● Collected interesting results, but this method had its issues

○ Limited Application

○ Too much overhead to gauge CSDs’ raw performance

● Solution? Rewrite our benchmarks without Spark:

○ Serial Python

○ Serial & Parallel C++ (Combinations of OpenMP & OpenMPI)

08/12/2021 | 3

Why Serial Python?

Able to test on single core with no overhead.

Compare efficiency of different solutions.

● Implementations:

○ SparkDF & SparkSQL → Pandas (Dataframes) & Numpy (Matrices)

○ Natively written functions (no libraries)

○ Dataframes → Lists

08/12/2021 | 4

Experiment Results: Running on One CSD

08/12/2021 | 5

Function 100 MB 200 MB 500 MB 1 GB 5 GB

Count Lines 5.4598 e -5 5.3644 e -5 5.4836 e -5 5.4836 e -5 N/A

Sum of Column 0.1135 0.2281 0.5687 1.2115 N/A

Mean of Column 3.5763 e -5 3.5048 e -5 3.5048 e -5 4.0054 e -5 N/A

Grammarian Matrix: AT*A 17.9477 35.6603 89.483 190.936 N/A

Normalize Column 5.3809 10.6566 25.6559 55.5248 N/A

Compute Mean 0.1138 0.2273 0.5676 1.2162 N/A

Compute Std Dev 3.6919 7.173 17.9616 38.0247 N/A

Count Digits 6.668 6.4407 16.0995 34.4509 N/A

Measure Shannon Entropy 343.624 650.1484 1699.7029 3576.3302 N/A

Total Elapsed Time 6.8031 Minutes 13.1948 Minutes 34.1343 Minutes 71.9462 Minutes N/A

Where to Go From Python?

Python’s Shortcomings

● Running in “parallel” is less than ideal in native Python

Using Python’s Multithreading Libraries?

● Typically accelerates one machine

● C++ implementation would be more thorough

08/12/2021 | 6

Duplicating Spark Tests in C++

● C++ is “lower level” than Pyspark or basic Python
○ Lets us get a better understanding of CSDs baseline performance

● Basic C++ Implementation is a reimplemented version of our Spark program, with a
single-threaded and a multi-threaded version using OpenMP

Single-Threaded Multi-Threaded

08/12/2021 | 7

Results

08/12/2021 | 8

Results contd.

08/12/2021 | 9

Results contd.

08/12/2021 | 10

C++ Conclusions and Thoughts

● Compared to Spark and Python, C++ implementation is a lot faster
○ Caveat: an expert with Spark or Python would likely be able to improve the performance of

those implementations
● Computational power of our CSDs seem to be much lower than the host

machine
○ Using all 4 cores of a single CSD, the job takes ~6.8x longer than using just one core on the

host machine.
○ Host also seems to scale better with increasing file size

● Resulting Question: When, if ever, would it make sense to use CSDs for
compute rather than a much-faster host?

08/12/2021 | 11

08/12/2021 | 12

Host (1.5GHz) and CSDs (1GHz)

Host: 128GB RAM (8GB swap)

Architecture: x86_64

CPU(s): 64

Thread(s) per core: 2

Core(s) per socket: 32

Socket(s): 1

CSD (x8): 5.8 GB RAM

Architecture: aarch64

CPU(s): 4

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1

Disclaimer: Our test was done using host system and 1 csd node (not the full 8 supported). This analysis
applies specifically to the operations used in this experiment.

Why use MPI?

Tests: Quickest scalable operations:

● Compute mean (constant time)
● Normalized Compute sum
● Normalized Compute standard deviation
● Normalized Count frequency of digits

08/12/2021 | 13

How to Offload Selected Operations?

When does it make sense to distribute our operations to
the CSD? Host and CSD reading in log file
- Tool used: stress-ng --cpu 64 --vm 1 --vm-bytes 95% (stressed RAM and core count)
- Stressed Host tested with mounted CSD storage.
- No Stress CSD tested with mounted CSD storage.

08/12/2021 | 14

Can message passing be used to decrease csd vector
build time

Issue:

● Most expensive operations for the CSD was to read file and build vector.
● Host completes those operations in 5.86(s)(stressed) 3.91(s)(no stress)
● CSD completes those operations in 23.75(s)

Test:

● 100MB/200MB/500MB/1GB/2GB log file.
● The host reads file from CSD storage and creates vector. Host will then message pass vector to csd.
● See if there is an decrease in overall time for csd to complete its operations.
● Additional parameter for mpirun --mca btl_tcp_if_include flannel.1 (includes interface)

08/12/2021 | 15

Offloading operations passing vector to CSD

- Tool used: stress-ng --cpu 64 --vm 1 --vm-bytes 95% (stressed RAM and core count)
- Stressed Host tested with mounted CSD storage.
- No Stress CSD tested with mounted CSD storage.

08/12/2021 | 16

08/12/2021 | 17

Still does not make sense on a per operation comparison

- Operation costs on a 1GB data log.
- Even after vector is in memory, the

csd still executes the operation
significantly slower than the
stressed host test.

- Future work needs to be done with
a focus on small operations. CSDs
seem to be of more use in smaller
operations on smaller files.

Future work for passing
information

- Further investigate MPI’s
usage for communication.

- Need to develop a better way
for host and csds to share
storage.

- Create a pooled storage for
CSDs, possibly ZFS.

- Data filtering
(encrypt/decrypt)

08/12/2021 | 18

CSDs with
Charliecloud

About Charliecloud
Background on experiments

Analysis of results

08/12/2021 | 19

About Charliecloud

● Bring your own software stack
○ Containers
○ Container images

■ Code
■ System tools
■ Runtime
■ Settings

● Charliecloud Images
○ Few permissions
○ Minimally affect cluster resources

08/12/2021 | 20

Build Location Storage Location

Host NVME Host NVME

Host tmpfs Host tmpfs

CSD NVME CSD NVME

CSD tmpfs CSD tmpfs

Experiments ● Typical workflow: Build image
on a compute node

○ (Inefficient!)
● Research Question: What is

the best filesystem to store
user images on in a cluster
environment?

○ Compare small CSD to big host
○ Compare big host to LANL’s fog

(later)

08/12/2021 | 21

CSDs out-perform host on small image?

08/12/2021 | 22

Build Location Storage Location

NVME NVME

tmpfs NVME

NFS NFS

LUSTRE LUSTRE

tmpfs LUSTRE

tmpfs NFS

Experiments
● How does our host with NVME

compare to a LANL production
setup?

○ Lustre on Fog vs
○ NFS on Fog vs
○ NVME on our host

08/12/2021 | 23

Our host

08/12/2021 | 24

NVMe vs Other Filesystems

Our host

Conclusions and Next Steps

● Future work on variability across runs
○ Implications for scaling to larger container image builds

● Viability of CSDs for medium term storage

● Potential use case for CSDs with Charliecloud
○ Envisioning a new user workflow

08/12/2021 | 25

262608/12/2021 | 26

Overall times to complete all operations per data size

08/12/2021 | 27

Method Spark Python C++

1 CSDs 8 CSDS
Serial on

CSD
Serial on CSD

Multithread
on CSD

Host stressed and
CSD

Host stressed

100MB N/A N/A 408 s 45.47s 43.94s 36.83s 9.82s

200MB N/A N/A 792 s 90.61s 87.40s 72.51s 19.36s

500MB N/A N/A 2,048 s 229.10s 217.09s 181.97s 48.16s

1GB 2759.17s 542.44s 4,317 s 457.74s 432.54s 358.16s 94.61s

2GB N/A N/A N/A 929.60s 870.97s 714.72s 187.58s

